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This work proposes a uniformly convergent numerical scheme to solve singularly perturbed parabolic problems

of large time delay with two small parameters. The approach uses implicit Euler and the exponentially fitted extended
cubic B-spline for time and space derivatives respectively. Extended cubic B-splines have advantages over classical
B-splines. This is because for a given value of the free parameter 4 the solution obtained by the extended B-spline

is better than the solution obtained by the classical B-spline. To confirm the correspondence of the numerical
methods with the theoretical results, numerical examples are presented. The present numerical technique converges
uniformly, leading to the current study of being more efficient.
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Introduction

Consider the two-parameter singularly perturbed one-
dimensional parabolic time delay convection-diffusion
initial-boundary value problem defined as

ot
ux, t) = ¢px,t), (x,t) e’y =1[0,1] x [—7,0], (1)
u(0,8) = ¢i(¢), I ={(0,8) : 0 <t < T},
ul,t) =¢,), I' ={(1,0): 0=t < T}.

(8 4 Lw> u(x,t) = Hx, 1), (3,) € D
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whereD = Q, x (0, 7,2, =(0,1),0 <e <1,0<u <1,
Hx,t) =cx, ulx,t —1)+f(x,t) and 7 >0 repre-
sents the delay parameter and a(x, £), b(x, t), c(x, ), fix, ),
dp(x, 1), ¢y (t) and ¢, (t) are sufficiently smooth, bounded
functions on D = [0, 1] x [0, T], that satisfy

b
a(x,t) > o > 0,bx,t) > B > 0,c(x,t) > >0,y = min <7>
D \a

The operator L, , given as
Leju(x,t) = —sttyy — palx, Huy + b(x, t)u.

The existence of function approximations has been the
subject of extensive research [1-14]. Here, the existence
and uniqueness of a solution of (1) can be established
under the assumption that the data are Holder continu-
ous and sufficient smoothness of initial-boundary data
onI' =T, UT;UT, and compatibility conditions at the
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corner points (0,0), (1,0), (0,—7) and (1, —7), and delay
terms [15].

{ ¢5(0,0) = ¢;(0),

¢p(1,0) = ¢,(0), (2)

so that a unique solution exists and is sufficiently smooth
for the model problem (1). For ¢ — 0 and u = 1, numeri-
cal methods available in [16, 17] for the problem given by
Egs.(1) whose solution exhibits an exponential bound-
ary layer of width O(e) in the left boundary layer I';. As
the parameters ¢ — 0 and & — 0, the solution develops
boundary layers at x = 0 and x = 1. The parameters and
the ratio &/ affect the boundary layer’s width. We look
at Eq. (1) above with ¢/u?> — 0 as u — 0 and u?/e — 0
as ¢ — 0. As a result, the uniformly convergent numeri-
cal treatment presented in this study is independent of
the two parameters € and p.

Two-parameter time delayed singularly perturbed
parabolic problems have not been studied as exten-
sively as one-parameter problems. Such type of prob-
lems are widespread in many phenomena of real life
problems (see, for example, [18-20]) described by
boundary layer problems. For singularly perturbed one-
parameter partial differential equations many works
have been delivered numerically in recent years (see,
for example, [16, 21-33]). Not much numerical investi-
gations have been done on two-parameter time delayed
singularly perturbed parabolic problems. The work
on two-parameter time delayed singularly perturbed
parabolic problems have been started by Govindarao
et al. [34], where they considered an upwind differ-
ence scheme on the Shishkin type meshes. First-order
in both space and time numerical method was estab-
lished. Sumit et al. [35] extend the works, where they
considered a hybrid scheme for space consisting of cen-
tral difference, upwind and midpoint operators on layer
adapted piecewise uniform Shishkin mesh. Almost
second-order in space and first order in time numerical
method was established. Negero [36-40] also consid-
ered the problem similar to Sumit et al. and proposed
numerical methods based on fitted operator methods
on a uniform mesh, which improved the rate of con-
vergence. However, for the problem under study, there
are no known fitted extended cubic B-spline numerical
methods. Here, the paper focus on exponentially fitted
extended cubic B-spline for spatial discretization and
the implicit Euler method for time discretization on
uniform meshes. This is the more accurate compared
to existing methods for the problem addressed in this
work.

The paper is arranged as follows. Section 2 presents
the bounds on the derivatives and exact solution of Eq.
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(1). The discrete scheme are discussed in Sect. 3. Sec-
tion 4 deals with convergence and stability of the pro-
posed numerical scheme. Numerical results are given
in Sect. 5 to illustrate the theory. The paper concludes
with a discussion of the results obtained.

Notations: In this paper, we denote a generic positive
constant by C, independent of mesh parameters y and ¢.
The supremum norm on a domain D is defined as

Al = sup [hx, )]
(x,6)eD

Preliminaries

Lemma 1 (Continuous maximum principle) Let z
(x, £) € C2(D)NCO° (D), and assume that z(x,t) > 0,
V(x,t) € T =T, UL, UT,. Then (& + L, )z(x,¢) = 0 in
D implies that z(x,t) > 0,V(x,t) € D.

Proof Let (¢*,v*)eD such that z(¢*v*) =
min(x,t)eb z(x,t) < 0. Then (§*,9*) ¢ I'. Since at the
point (§*, ¥*) function 7 attains minimum, then, we have

zZy = z¢ = 0at (2%, v*) and zy (¢*, v*) > 0 and thus,

9 o e 02NV 8%z(¢*,v*)
<8t +L6,M>Z(§ V) = ot 2

a *’ *
~ pagg vy EET)

+ b(x, t)z(¢*,v*) < 0,

which is a contradiction. This implies z(x,t) >0 V
(x,t) € D. O

Lemma 2 ([35] Let u(x, t) be the solution of prob-

lems (1) and i, j are any non-negative integers satisfying
0 <i+3j <4.Then,
(ve)" ¢

‘ D i/ 2\
(ﬁ) <M>,if82—>0as,u—>0,
& e u

where C a positive constant independent of the param-
eters € and L.

1 2
ifu——>0ase—>0,

ai+ju
dxiot

Discretization of the problem

The time semi-discretization

For the time domain [0, T] equidistant mesh discretiza-
tion with uniform step size At is used such that
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Qf\/l = {tm = mAt,m = 0, 1, ...,M, At = T/M},

where M is mesh elements used on the interval [0, T].
The mesh for [—t, T]is defined as

2} ={tm =mAt,m=0,1,..,5,t, =1, At = 7/s}.

where s mesh elements used on the interval [—t, 0]. Here,
semi-discretizing the given problems (1) by applying
implicit Euler scheme written as

U (x) — U™ 1(x)
At
= H"(x),
u™0) = ¢i(tm),0 < m < M,x € Q,
U™Q) = ¢p(tm),0 <m < M,x € Q,
U (x) = pp(x, ty), —s <m < —1,x € Q,
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this contradicts assumption and_l'[’”“(y*) > 0, which
implies that [T *1(x) > 0,V(x) € D. O

Let u(x, t,,) be the exact and U™ (x) be the approxi-
mate solution of the problem in (1). The error esti-
mates for the temporal semi-discretization (4)
Epv1 = U™ (x) — u(x, tyy,) satisfy the following Lemma.

— e(Ux)" (%) — pa™ (%) (Uyx)" (x) + " (x) U™ (x)

where H” (x) = —c"(x)U"" 5 (x) + f" (x),

0<m<M,x € Qy and U"(x) is the approximate solu-
tion of u(x,t,,) at (m)th time level. The Eq. (3) can be
rewritten as

(1+ ALZ ) U™ (x) = H(x, bn),

umo) = ¢(tm), m=0,..,M,

umQ) = ¢r(ty), m=0,...M,

U™(x) = ¢p(x, tm), x € (0,1),—(s+1) <m < —1,
(4)

where

Lﬁ,; = —&(Uxx)" (%) — pa™ (x) (Uy)" (x) + 6" (x)U™ (x)
H(x, ty) = — A" () U™ 5 (%) + At (x) + U™ (x).

Lemma 3 (Semi-discrete maximum principle) Assume
that 1" (x) € C>1(D) such that TI"™1(0) > 0 and
7 *1(1) = 0. Then, (1+ At£g) )" (x) = 0, Vi € D,
implies that TT"*1(x) > 0, Vx € D.

Proof Assume that MM (y*) =
min ) 5 nm+1(x) suppose  IT"*1(y*) < 0.
Now, it is clear that y* ¢ {0,1}, which implies that
y* € (0,1). Therefore, we have %(HWrl (y*)) =0 and
& (T(y*)) = 0and thus

dx?

y*eD such

and

d?
(L+ A )" () = —eat—— (171 ("))

_MAtam+l(y*)%l—[m+l (}’*) +(1+At)l—lm+l (}’*) <0,

Lemma 4 (Local error estimate) The local error esti-
mate with the semi-discretized problem (4) is given by

IEm1lloe = C(AD.

Proof Applying Taylor’s series expansion to u(x, ;)
gives,

U i) = 105, ) + Aty @ ) + O((AD?).
(5)
Substituting (5) into the continuous problems (1) gives,

u(X, tpg1) — UX, ty)
At
= (s, tw) + O((20)?)
= EUpx (%) bnt1) + LAWK, b 1) U (X By 1)
= b(%, b ) U (X5 tna1) — €6t 1)U (X, Es1m)
+f (%, tm+1)

+ O((At)2>.

Clearly Ej;+1 (%) satisfies the semi-discrete operator
(14 ALY Eppyr (x) = O((At)z),

with the conditions:

Epnt1(0) = Eppa (1) = 0.
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Thus using maximum principle given at Lemma 3 we
have

IEm+1lleo < C(AD).
O
Lemma 5 (Global error estimate.) The global error esti-

mate TE,, in the temporal direction at t,, is given by

ITEn|l = C(AD).

Proof 'The global error estimate at the (m1)th time step
is given by

T
’m<7

”TEm“oo: = At

m
e
k=1

< llerlloo + llealloo + - 4 llemlloo-

o0

Using local error estimates given in Lemma 4,
< Ci((m)Ar)(At)
< C1T(At),since m(At) < T
= C(An, C=G1T,

where C is constant independent of &, u and A¢. [

Lemma 6 [41] The solution U™ (x) of semi-discretized
scheme (4) and its derivatives satisfies

diU™(x)
dxi
for0 <i <4,

| | < C(l +a)1—iefua)1x +w2—iefua)2(lfx)>’

where v is any real constant number, 4;(x) and Z2(x)
are two real solutions of (4) such that A;(x) <0 and
Z2(x) > 0 and by assumption w1 = — maxX,¢[o,1] A1(x) and
w7 = Minkefo,1] 42(%).

Discrete extended cubic B-splines construction

The spatial domain [0, 1] is discretized into N equal num-
ber of mesh elements each of length # = N~L. This gives
the spatial mesh

Qi\[ = {x,, =nh,n=12,...,N,x0 = 0,6y = 1},

where x, is mesh points. The extended cubic B-spline
basis of degree 4, K, (x, 1), is defined as the form

Page 4 of 12

Ky (%, 2)
Ah(1 — A)(x — xy-2)° + 34 — %2-2)*, % € [X5—2, %0-1],
(4 — Mt + 12K (x — x,_1)
+ 61224 N)(x — x,_1)% — 12h(x — x,1)°
= 3A(x — x0—1)*, % € [xn—1, %],
— ﬁ (@ — D + 123 (%, — x)

+ 6122+ 1) (%, — %) = 120(x,,, —x)°

—34 (x”n+1

4h(1 = 2)(Knga — %) + 32012 — 0 % € [Hur1, Xnpa),

4
— )", % € [Xn, xn1 s

0, otherwise.
(6)
An approximation extended cubic B-spline func-
tion, S(x, A) to the exact solution U (x, t;,+1) at (m + 1)th
time level is a linear combination of the extended cubic
B-spline basis as

N+1

S@A = tukulx, 2, (7)

n=-—1

where ¢,’s are coeflicients to be determined by colloca-
tion at each time level. Using the approximation given by
(7) and Table 1 at nodal points x = x,, in (4) gives, The
Eq. (3) can be rewritten as

(14 ALY U™ () = H i o),
U"™10) = ¢(tmy1), m=0,.., M,
U1 = ¢, (tgr), m=0,.., M,
U () = ¢p @y tnt1), %0 € (0,1), —(s+1) <m < —1,
(8)
where
Lol = —o (e, 1) (Us) ™ ()
— ™ () (U) ™ ()
+ 5" ) U (),
H (%, tm) = — At () U175 ()
+ A" () + U™ (%)

Putting the approximation (7) into collocation (8) the

operator 1 + AtLgA’Z’h in (8) is given as

Table 1 Values of K, (x) and its first two derivatives at the nodal

points
X Xn—1 Xn Xn+1 Otherwise
Kn(x, 2 4=7 8+ 4=4

n(x,4) 24 i) 24 0

’ N —1 1

Kn(X, /\,) bl 0 50 0

" 244 244 244

Ko 0, 2) g — % g 0




Negero BMC Research Notes (2023) 16:282

1 + 5l + 1 1 = H®n t), 0 < m < N,

)
where
_ 2+ 4 1 4— 2
r, = —o(e At Y + MAtﬁam“(xn) + T (1 + Atbm“(xn)),
242 8+ 4
= oAt 2 aw ),

247 1,0 4—; )
= oo m At = At () + = (1 T A (xn)),

2h

where o (g, u) = SPZ’fI" coth (M%)'

For the given boundary conditions we have

44, JBFA L Ah e
o {1 2 o o &1 = ¢i(tm+1),
dmd L8R A=A
2 IN-1 D {N o4 IN+1 = Gr(bmt1)-

(10)
The Egs.(9)-(10) gives to (N + 3) x (N + 3) systems in
(N + 3) unknowns ¢_1, o, {1, ---» {N+1- From Egs. (9)-(10),
eliminating ¢_; and {n41 results (N + 1) system of equa-
tions in (N + 1) unknowns &, ¢1, ..., {n which can be writ-
ten in a matrix form as

Page 5 of 12

and column vectors V and Q are

V= [50, Clr veey CN]T and

given as

Q = H(x01 tm) - ¢l(tm+1)r0_:H(xlx tm)rH(xZ) tm); weey
T
HO o) = (b))

The matrix associated with Eq. (11) is of size
(N +1) x (N + 1) with its entries for n =1,2,..,N — 1
are Ry(x;) < 0,Ry(xy) > 0,R3(x,) < 0. Therefore, the
matrix R in Eq. (11) is an M-matrix and therefore its
inverse exist and positive. Hence, tridiagonal system in
Eq. (11) easily solved by any existing methods.

Convergence analysis
Lemma 7 The extended cubic B-splines K_j(x, 1),

Ko(x, A),... Kn (%, A), Knt1(x, A) satisfy

N+1
n=—1

|Ku(x, 1) <1.75,0 <x < 1.

RV =0Q, (11)
where
—Z%ro_—i—rg —ro_—i-raL 0 .. 0
Ry(x1) Ry(x1) R3(x1) O 0
2 0 Ri(x2)  Ra(x2) R3(x3) O 0
0 0 Ri(xn—1) Ro(xn-1)  R3(xn-1)
0 0y ok —2( )

where Ry, (x,),n = 1,2,..,N — 1 are defined as

Rien) = —o (e, AL
X = —o (&,
1 Y% 2
24+ 8+ 1
Ray(@n) = 0 (e, W) At = 5= + —= A" @),
244

Rs(@n) = —0(e, 1) At =5 o

1 4,
+HALa" ) + = (1 T Atb’”“(x,,)),

1 4— )
— uAt—a" (x,) + -1 (1 + Atbm“(xn)),
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Proof At xy,

N+1
DK@ D = 1K1 (o D]+ 1K Gy D] + K1 (i, )|
n=-—1

4—21 841 4—-1

= =1
24 + 12 + 24

For x,—1 < x < xy+41,

, 8+ 41 4 — A
[Kn(x, )] < 12 |Ky—1(x, A)| < 2%
K (6 )] < 22
X, < 5
n+1 2%
K 1)] < 222
n—2(X, < 2% .
Thus, for x,—1 < x < %41,
N+1
> 1K@, )| = 1K1 (o )| + (K6 2]
n=—1
20+ 4
o 1K1 Gms A+ 1K (i, A)] = ==

Since —8 < A < 1, so % < 1.75 and this complete the

proof.

Theorem 1 Let u(xy, ty+1) be the continuous solution of
Egs. (1) and (2) and S(x, A) be the collocation approxima-
tion from the space of splines to the solution U™V (x) be
the approximate solution of Eq. (3). Then, for sufficiently

large N, the following error bound holds

ILAS U ) — LEGZ ()|
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LA (U ) = S 7)) | < CN72

£,

Proof Let Zy(x,)be a unique spline interpolate to the
solution L/ *1(x,,) of the problem (3) given by

N+1

ZNGn) = Y LK, 2). (12)

n=-—1

The estimates given in [42] yields

drymtl
|t — zve|| < o E5FE) N
o] dx* 50
du"™ ™ (xy)  dZn (xn) d* U™ (x) -3
- <C||—— | N
dx dx o ||,
U ) dPZN (xn) d* Ut (x) 2
- < Col| 52| N
dx? dx? & dx* o
(13)

Using triangle inequality,

|ttt = 5@ )| = [|umt o - Zu

HIZN Xn) = S @y Dl oo
(14)

The collocating conditions are Lg‘,fihlj’”“ (%) = Lg‘,fih
S(%n, 2) = H (%, tyy). Assume that L2 Zy (x,) = H %y, ty)

which satisfies the boundary conditions Zy(x1) = Zy

(xN+1)' Then)

) + ) (U ) = Zn o) )|

dzum+1(xn) . dzZN(xn)

M
= L2 S (n, ) — LK Zi ()|
N A N NCORY
= x> W
dumtt (%) azZn (xy)
+I—Ma(x)< e
d2um+1(xn)
< lello (e, w)| B + lello (e, )|
o0
AU (x,))  dZn(x,)
+|u|||a<x>||ooH - - dx”

o] e -z

dx?

e¢]

o]
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Using Lemma 1 and using Eq.(13) Table2 £} and pYi with pw=10"%2=—1e—03, for
Example 1

At,h 1 At,h -2
max |[LAS U™ @) — LA Zy ()| < CN 2,
xeD ’ el N =32 N = 64 N =128 N = 256

—_ _ 2 — 3 — 4
this is because |o (g, n) — 1] < CN~2. Equation (11) and At=025/2 At=025/2" At=025/2° At=025/2

LALLM (o) — LALH Zy () results 100 57908e —03 36490 —03 21309¢—03  1.1633¢ — 03
_ _ 066626 077604 087324
R(V-V)=Q-Q (16) 102 10523e—02 54742e—03 27938e—03 14116e — 03
where 0.94283 0.97042 0.98490
1074 10658e—02 55311e—03 28188¢—03 14230 — 03
V =V = (co— 0,1 — €1y o SN — EN)» 0.94630 0.97249 0.98615
- _ _ 1076 10662¢ —02 55324 —03 28191e—03 1423le —03
Q-Q= (H(xo’ tm) — H o, tr), H (51, bn) = H (51, bn), 094650 097267 098620
H(xx ) — Hxn, tm))- 1078 10663¢—02 55336e—03  28200e —03  14237e — 03
094632 097252 0.98605
The matrices R is invertible, i.e, |[R™!| < C, and the 10710 10663¢ —02 55336e—03 28200e —03 14237¢ —03
boundary conditions are bounded. Therefore, Eqs. (15) 0.94632 0.97252 0.98605
and (16) results|V — V| < CN~2 Thus, Egs. (7) and (12) 102 10663¢ —02 55336 —03  28200e —03  1.4237e —03
gives 094632 097252 0.98605
Nio ENM 10663 —02 55336e—03  28200e—03  14880¢ — 03
1SGens 1) = Zn @ oo = I — Enl > IKu(x, Al < N2 P 091032 097252 092232 ’
= Table3 £/ and pYM with p=107%2=—1e—03, for
U Example 2
el N=32 N = 64 N =128 N = 256

Theorem 2 Let u(xy, ty+1) be the solution of the contin-
uous problem (1)-(2) and L[;”‘“1 be the numerical solution
of (8). Then, there exists a constant C such that the follow-  10-0 1553% —04 93152e—05 50828 —05  26527e — 05

At =0.25/2 At=0.25/22 At=0.25/23 At=0.25/2*

ing uniform error estimate holds: 0.73824 0.87396 0.93816
1072 21188 — 03 1.1511e — 03 5.9904e — 04  3.0557e — 04
SUP o, X et tns tn-1) — Uy < C(“ + N_2>~ 088023 0.94229 097115
- 1074 26785e — 03 1.4493e — 03 7.5362e — 04  3.8430e — 04
0.88607 0.94345 0.97160
1076 26752e —03 1.4491e — 03 75411e — 04  3.8487e — 04
Proof The proofis the consequence of Lemma 5 and 0.88449 094231 0.97040
Theorem 1. O 1078 2.6752e — 03 1.448% — 03 7.5355e — 04  3.8426e — 04
0.88469 0.94318 0.97162
Numerical examples and results 10710 26752¢ —03 14489e —03  7.5355¢ — 04  3.8426e — 04
In this section, two numerical results are used to con- 0.88469 094318 097162
firm the theoretical results using the proposed numeri- 10-12 26752e —03 1448% — 03 75355 — 04  3.8426e — 04
cal scheme. The exact solution of the numerical example 0.88469 094318 0.97162
is not available. Therefore, double mesh principle is used g/ 26752e —03 14493 —03  59904e —04  3.8426e — 04
to find the maximum absolute error EQIHM and the corre-  pyt 0.88429 12746 0.64057 -
sponding convergence order pé‘,[ lf” as
N.M
Eg[l'tM = max |L[;”Jr1 — U22;"+1|and pé\[l{w = log, %

0<n<N,0<m<M P
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Table 4 £)and p) with 4 = —Te — 03, for Example 1

el p— N =32 N = 64 N =128 N = 256
At =0.125/2 At = 0.125/22 At =0.125/23 At =0.125/2%
1074 1076 1078 10710

102 55116e — 03 2.8029e — 03 14137e — 03 7.1003e — 04
0.97555 0.98744 0.99352

10~ 5.5305e — 03 2.8183e — 03 1.4228e — 03 7.1485e — 04
0.97258 0.98609 0.99302

1076 5.5341e — 03 2.8182e — 03 1.4228e — 03 7.1485e — 04
0.97357 0.98604 0.99302

10-8 5.534% — 03 2.8182e — 03 1.4228e — 03 7.1485e — 04
0.97378 0.98604 0.99302

1010 5.534% — 03 2.8182e — 03 1.4228e — 03 7.1485e — 04
0.97378 0.98604 0.99302

1012 5.534% — 03 2.8182e — 03 1.4228e — 03 7.1485e — 04
0.97378 0.98604 0.99302

EMV’ 55349 — 03 2.8183e — 03 14228¢ — 03 7.1485e — 04

PQI;ALA 0.97378 0.98604 0.99302 -

Table 5 £[) and p)\/\ with 4 = —1e — 03, for Example 2

elpn— N =32 N =64 N =128 N = 256
At =0.125/2 At =0.125/22 At =0.125/23 At =0.125/2*
1074 1076 1078 10710

100 7.0128e — 05 4.4746e — 05 2.4968e — 05 1.3154e — 05
0.64823 0.84168 0.92458

102 1.1458e — 03 5.9706e — 04 3.0501e — 04 1.5414e — 04
0.94041 0.96902 0.98462

1074 1.4510e — 03 7.5362e — 04 3.8417e — 04 1.939% — 04
0.94514 0.97209 0.98576

1070 1.4434e — 03 7.5568e — 04 3.8530e — 04 1.9454e — 04
0.93362 0.97179 0.98592

10—8 1.4434e — 03 7.5566e — 04 3.8531e — 04 1.9454e — 04
0.93366 097172 0.98595

1010 1.4434e — 03 7.5566e — 04 3.8531e — 04 1.9454e — 04
0.93366 097172 0.98595

1012 1.4434e — 03 7.5566e — 04 3.8531e — 04 1.9454e — 04
0.93366 097172 0.98595

EaN,QA 1.1458e — 03 7.5568e — 04 3.8531e — 04 1.9454e — 04

p'gfﬁ” 0.93366 097172 0.98595 -

The uniform error before extrapolation ENM and the where U*"! is a numerical solution obtained using the
corresponding uniform order of convergence before space and time N x M mesh spacing with a mesh size of

extrapolation p"\*M by: hor At.

ENM — max ENM and pNM = 1o .
= max L P =106 N )
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Table 6 £[)and p)\ with u = 1073, 4 = 0, for Example 1
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Table 7 £}/ and p/ with u = 1079, 4 = 0, for Example 2

el N=32 N = 64 N =128 N = 256 el N=32 N =64 N =128 N = 256
At =0.25 At =0.25/22 At =0.25/2* At =0.25/26 At =0.25 At =0.25/22 At =0.25/2* At=0.25/2°

1070 73970e —03 36490e — 03  1.1642¢e —03  3.1262e — 04 1070 28379 —04 93145 —05 24962e —05 63499 — 06
10194 16482 1.8969 16073 1.8997 1.9749

10-2 194386 —02 54750e —03 14141e—03  35651e — 04 1072 36086e —03 1.1504e —03  3048% — 04  7.7337e — 05
1.8279 1.9530 19879 16493 19158 19791

10~4  1986le —02 55330e—03 14235 —03  3.5849 — 04 10~% 45529 —03 14480e —03  3839%e — 04  9.7429¢ — 05
1.8438 1.9586 16527 19150 19785

1076 1.9905e — 02 55564e — 03 14355 —03  3.6396e — 04 106 4.5651e —03 14523¢ —03  38509e — 04  9.7695e — 05
1.8409 19526 19797 16523 19151 19788

1078 1.9905e — 02 55564e — 03 14355 —03  3.6459 — 04 108 45652 —03 14523 —03 38510 —04  9.7698e — 05
1.8409 19526 19772 16523 19150 19788

1010 1.9905e — 02 55564e — 03 14355 —03  3.6459¢ — 04 10710 45652 —03 14523 —03  38510e —04  9.7698e — 05
1.8409 19526 19772 16523 1.9150 19788

10-12 19905 — 02 55564e —03 14355 —03  3.6459 — 04 10712 45652 —03 14523 —03  38510e —04  9.7698e — 05
1.8409 19526 19772 16523 1.9150 19788

ENM - 1.9905e —02 55564 —03  14355e—03 36459 — 04 MM 45652e—03 14523e—03  38510e—04  97698e — 05

Method in [35] Method in [35]

ENM 43706 —02 73807e—03  18967¢ —03  4.7927e — 04 EMM 111006 —02  24588e—03  60458e —04  1.504% — 04

Example 1 Consider problem
ou 9%y
il
ot x2

—16x*(1 — )%, (%, 1) € (0,1) x (0,2],

9
—u( +x)aj +ux,t) = ulx,t—1)
X

with

u(0,¢) =0,u(1,t) =0,t € (0,2],
{u(x, t)=0,(xt) €[0,1] x [—7,0].

Example 2 Consider problem

ou 8%u

e

ot 02
=uxt—1)+x(1— x)(et - 1),

(x,t) € (0,1) x (0,2],

i (1 +ax(l—x) + t2) LI
ox

with

u(0,t) =0,u(1,t) =0,t € (0,2],
{u(x, t) =0, (,¢t) €[0,1] x [—7,0].

Maximum pointwise errors (EQ’;LM ) and rate of conver-

gence (pé\[l’fw) for Example 1 and Example 2 have been
demonstrated by fixing 1 = 107* and A = —1le — 03 in
Tables 2, 3 respectively, for various values of . The results
given in Tables 2, 3 clearly indicate that the proposed
numerical method is accurate of order O((At) + N _2).

Also, tabulated results in Tables 4, 5 indicates that maxi-
mum point-wise errors going to stabilized as the two
parameters ¢ and ¢ approaches to zero. Comparisons of
our numerical results with those of [35] are presented in
Tables 6, 7. From these tables, we can confirm the more
accurate of the proposed numerical method. The numeri-
cal solutions obtained by the numerical scheme pre-
sented in Example 1 are shown in Fig. 1a, b and numerical
scheme presented in Example 2 are shown in Fig. 2a, b.
From Figs. 1a, 2a, we confirm the occurrence of both
left and right boundary layers near x =0 and x =1 for
u = 107° and boundary layers near x = 0 for ;& = 107,
The graphs between N and maximum pointwise errors of
Examples 1 and 2 are plotted as the log-log scale respec-
tively, in Fig. 3a, b. From these two graphs, one can
observe that the numerical scheme converges uniformly
as the perturbation parameters goes very small.

Conclusion

In this paper, the exponentially fitted strategy is applied
to extended cubic B-spline scheme for solving a two-
parameter singularly perturbed temporal delay parabolic
problem. In our present study of continuous problem,
the temporal direction is discretized by an implicit-Euler
scheme with a uniform mesh, and the spatial direc-
tion is discretized by an exponentially fitted extended
cubic B-spline finite difference method fitting only one
parameter £. We have proved that the method provides
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first-order and second-order accurate uniformly con-
vergent in time and space respectively. Two numerical
tests are introduced to confirm the effectiveness of the
proposed numerical scheme and approve the theoretical
findings.

Limitations

The proposed uniformly convergent numerical approach
is based on a uniform mesh that does not resolve bound-
ary layers because there are not a sufficient number of
mesh points in boundary regions.
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