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associated with cancer prognosis [4]. In addition to lung 
cancer, molecular subtypes have been widely investigated 
in many other cancer types, such as breast cancer [5] and 
colorectal cancer [6]. We refer the readers to [7–10] for 
comprehensive reviews of cancer subtyping.

Traditionally, there have been various unsupervised 
clustering algorithms used for this purpose. Unsuper-
vised clustering methods treat all features equally, with-
out considering their significance to the clinical outcome. 
As data typically contain multiple underlying struc-
tures, e.g. a set of documents may be clustered based 
on authorship, topic, or writing style [11], the results of 
unsupervised clustering can be driven by one dominant 
structure, or a mixture of several structures. There is no 

Introduction
The leading cause of cancer death for both men and 
women is lung cancer [1]. However, risk levels vary 
between patients, so it is important to identify clinically 
prognostic subtypes of lung cancer with different risk 
levels and target higher risk subtypes for more aggressive 
treatment [2, 3]. Gene expression data may be used for 
this screening, as expression levels of certain genes are 
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Abstract
Lung cancer subtyping based on gene expression data is important for identifying patient subgroups with 
differing survival prognosis to facilitate customized treatment strategies for each subtype of patients. Unsupervised 
clustering methods are the traditional approach for clustering patients into subtypes. However, since those 
methods cluster patients based only on gene expression data, the resulting clusters may not always be relevant to 
the survival outcome of interest. In recent years, semi-supervised and supervised methods have been proposed, 
which leverage the survival outcome data to identify clusters more relevant to survival prognosis. This paper 
aims to compare the performance of different clustering methods for identifying clinically prognostic lung cancer 
subtypes based on two lung adenocarcinoma datasets. For each method, we clustered patients into two clusters 
and assessed the difference in patient survival time between clusters. Unsupervised methods were found to 
have large logrank p-values and no significant results in most cases. Semi-supervised and supervised methods 
had improved performance over unsupervised methods and very significant p-values. These results indicate that 
unsupervised methods are not capable of identifying clusters with significant differences in survival prognosis 
in most cases, while supervised and semi-supervised methods can better cluster patients into clinically useful 
subtypes.
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guarantee that the structures identified by unsupervised 
clustering is relevant to the outcome of interest [12]. In 
cancer subtyping studies, it has been shown that the sub-
types identified by unsupervised clustering may some-
times be related to cell-of-origin [13] or histology [14] 
rather than patient’s survival time. Therefore, although 
subtypes from unsupervised clustering may be useful for 
investigating the biology of cancer, they are not always 
associated with clinical prognosis [12]. To combat this, 
semi-supervised methods, which attempt to consider 
both expression and clinical data, have been proposed 
[15]. These methods select genes that are more closely 
related to clinical outcome for clustering input [15]. 
Recently, supervised clustering methods have also been 
proposed, such as survClust [12], ogClust [16], and [17]. 
These methods directly incorporate clinical outcome 
information into the clustering process to ensure that the 
resulting clusters are clinically relevant.

In this paper, we compare the performance of these 
three types of clustering algorithms for identifying prog-
nostic subtypes in lung cancer, providing a guidance on 
future applications of these approaches. The two datasets 
used are from patients with lung adenocarcinoma, one 
of the most common types of lung cancer [18]. We will 
apply each clustering method to identify subtypes and 
evaluate the performance based on the prognostic differ-
ence between subtypes.

Methods
Data
Two datasets were considered. The first dataset used 
was the lung adenocarcinoma dataset from The Cancer 
Genome Atlas Research Network (TCGA-LUAD) [18], 
which included patient gene expression data (transcript 
per million (TPM) values, 56,716 features), as well as clin-
ical data, such as smoking history, cancer stage, patient 
survival time, patient censoring event (patient status at 
the time of leaving the study), patient age, and patient 
sex. The second dataset was from a study conducted by 
Shedden et al. [19], which included similar data variables, 
with fewer gene expression features (normalized micro-
array data with 22,283 features). Patients without both 
clinical and gene expression data were excluded. Further-
more, duplicate entries for patients were excluded, along 
with patients with survival time of 0. After applying a 
2-component principal component analysis (PCA), out-
liers were found and removed. All gene expression data 
were scaled from 0 to 1 using min-max scaling. In the 
TCGA-LUAD dataset, 483 patients remained after data 
preparation, while in the Shedden dataset, 346 patients 
remained. A summary of patient characteristics is pro-
vided in Supplementary Table 1.

Clustering methods
The clustering methods tested were unsupervised meth-
ods, semi-supervised methods, and outcome-guided 
methods. For unsupervised methods, k-means (KM) [20], 
Gaussian mixture (GM), and agglomerative clustering 
(AC) were considered. Implementations of KM, GM, and 
AC models were provided by Scikit-learn [21]. In addi-
tion, we also included a Consensus clustering method 
based on a voting consensus of KM, GM, and AC clus-
tering results, which follows the idea of [22]. Specifically, 
the method with the best agreement with the other two 
was selected as the reference, with the other two meth-
ods’ results adjusted to this reference and a best-of-3 vot-
ing deciding the final cluster of each patient. Note that 
our approach to select the reference method differed 
from that in [22] because we did not leverage any clini-
cal information in order to make the method unsuper-
vised. Strategies to include the clinical outcome variable 
in combination with Consensus clustering or other unsu-
pervised methods to enable semi-supervised learning 
are described in the next paragraph. Prior to clustering 
analysis, a PCA was performed to reduce the dimension 
of features. The PCA considered gene expression data, 
as well as data on sex and age. The top principal compo-
nents (PCs) sufficient to explain 95% of the variance in 
the data along with two important clinical variables, i.e. 
cancer stage and smoking status, were used as features in 
the clustering analysis.

For semi-supervised methods, feature selection meth-
ods were first used to select features, and these selected 
features were then used by clustering methods to cluster 
patients. Specifically, feature selection methods included 
Cox proportional-hazards regression [23] and random 
survival forests (RF) [24]. Implementation of Cox regres-
sion was provided in Python by lifelines [25], and the 
implementation of RF was provided in R [26]. Each fea-
ture selection model used patient survival time as the 
outcome variable and considered the same set of features 
as unsupervised methods. Based on each feature selec-
tion method, 20 features were selected for consideration 
in clustering. For the Cox regression, each feature was 
fitted univariately to the survival outcome, and the fea-
tures with the lowest p-values were selected. For RF, the 
top 20 variables selected in a minimal-depth search were 
used. Based on the feature-selected data, unsupervised 
clustering methods, including KM, GM, AC, and Con-
sensus, were applied. We considered the following eight 
combinations of feature selection and clustering methods 
for each dataset (TCGA or Shedden): Cox-KM, Cox-GM, 
Cox-AC, Cox-Consensus, RF-KM, RF-GM, RF-AC, and 
RF-Consensus.

For supervised methods, survClust (SC) [12] was 
considered. Patient survival time was used as the tar-
get value, and the same set of features as unsupervised 
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methods were considered. survClust was trained using 
cross-validation, with final clustering results based on the 
consensus after 10 rounds of 3-fold cross-validation, as 
suggested by the authors [12].

All methods were set to cluster into 2 clusters. The 
number of clusters was selected to evaluate the ability of 
the methods to separate patients into good and bad prog-
nostic subtypes. Method parameters that were changed 
from defaults are provided in Supplementary Table  2. 
Each method was run 200 times and averaged results 
were reported to reduce variation in performance due to 
random seeds, etc. Note that survClust had 200 trials of 
the 10-round 3-fold cross-validation run.

Evaluation
To evaluate the performance of the methods, Kaplan-
Meier survival curves [27] were plotted to visualize the 
difference in survival time distribution between the two 
clusters predicted by a clustering method.

Utilizing the survival curves, p-values based on logrank 
tests were calculated to characterize the performance of 
the methods. A lower p-value indicates a better-perform-
ing method. A significance threshold of p = 0.05 was set 
to indicate the best performing methods. Since all meth-
ods were run 200 times, the average p-value is used to 
represent the performance of a method. Furthermore, 
Adjusted Rand Index (ARI) [28] was used to assess the 
similarity between the clusters of two methods. Spe-
cifically, each of the 200 replicates from one method was 
compared to each of the 200 replicates from the other 
method to obtain an ARI value. The averaged ARI of 
those 40,000 values was reported.

Results
We applied unsupervised, semi-supervised, and super-
vised clustering methods to the TCGA-LUAD [18] and 
Shedden [19] datasets to investigate which methods 
could identify clinically prognostic subtypes. Based on 
each method, we identified two clusters, and compared 
the survival time distributions of the two clusters of 
patients. Table 1; Fig. 1 summarize the overall results for 
every method, with mean, standard deviation, and 95% 
CI based on 200 trials. Supplementary Figs. 1 and 2 dis-
play the Kaplan-Meier survival curves of the two clus-
ters based on a representative trial of each method for 
TCGA-LUAD and Shedden data, respectively.

Unsupervised methods presented non-significant dif-
ferences (p-value > 0.05) in patient survival time between 
clusters in most cases, except for the AC and Consensus 
methods on TCGA-LUAD data and the KM method on 
Shedden data (Table 1; Fig. 1). The Kaplan-Meier survival 
curves for those non-significant cases also did not pres-
ent strong separation between clusters (Supplementary 
Figs.  1 and 2). Therefore, the unsupervised clustering 
methods failed to identify clinically meaningful prognos-
tic subtypes in most cases.

As for semi-supervised methods, both random for-
est- and Cox Regression-selected models yielded highly 
significant differences in survival time between clusters 
for both datasets (Table  1; Fig.  1). The corresponding 
Kaplan-Meier survival curves also showed strong separa-
tion between clusters (Supplementary Figs. 1 and 2).

The supervised clustering survClust method also pre-
sented a highly significant difference between clusters for 
both datasets (Table 1; Fig. 1). It had a strong separation 

Table 1  Overall results of different clustering methods
TCGA-LUAD Shedden

Type Method Mean 
p-value

Standard 
Deviation

95% CI Mean 
p-value

Standard 
Deviation

95% CI

Unsupervised KM 0.493 0.107 (4.32E-09, 0.516) 3.06E-02 8.46E-02 (2.25E-14, 0.244)
GM 0.355 0.293 (4.32E-09, 0.857) 0.308 0.260 (2.25E-14, 0.892)
AC 1.23E-08 0 (1.23E-08, 1.23E-08) 0.276 5.55E-17 (0.276, 0.276)
Consensus 4.69E-02 0.167 (1.23E-08, 0.648) 0.408 0.404 (1.19E-05, 0.876)

Semi-Supervised RF-KM 4.32E-09 1.42E-23 (4.32E-09, 4.32E-09) 2.25E-14 6.83E-28 (2.25E-14, 2.25E-14)
RF-GM 4.32E-09 1.55E-23 (4.32E-09, 4.32E-09) 2.25E-14 6.83E-28 (2.25E-14, 2.25E-14)
RF-AC 4.32E-09 0 (4.32E-09, 4.32E-09) 2.25E-14 0 (2.25E-14, 2.25E-14)
RF-Consensus 4.32E-09 1.85E-11 (4.32E-09, 4.32E-09) 2.25E-14 6.88E-28 (2.25E-14, 2.25E-14)
Cox-KM 4.32E-09 1.48E-23 (4.32E-09, 4.32E-09) 2.25E-14 6.79E-28 (2.25E-14, 2.25E-14)
Cox-GM 4.32E-09 1.56E-23 (4.32E-09, 4.32E-09) 1.14E-03 1.15E-02 (2.25E-14, 2.25E-14)
Cox-AC 4.32E-09 0 (4.32E-09, 4.32E-09) 2.25E-14 0 (2.25E-14, 2.25E-14)
Cox-Consensus 4.32E-09 1.53E-23 (4.32E-09, 4.32E-09) 2.25E-14 6.91E-28 (2.25E-14, 2.25E-14)

Supervised SC 4.32E-09 2.71E-22 (4.32E-09, 4.32E-09) 2.25E-14 1.24E-27 (2.25E-14, 2.25E-14)
Note: This table displays the overall clustering results, providing p-values, standard deviations for p-values, and 95% confidence intervals (CIs). Methods are 
organized by type (unsupervised, semi-supervised, and supervised). Results are summarized from 200 trials for each method. Agglomerative clustering results, 
except for RF-AC, do not have a standard deviation or confidence interval, as they are not affected by random initial values and thus are the same across 200 trials. 
The 95% CI was calculated based on the 2.5 and 97.5 percentile of p-values from 200 trials
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between clusters, which are clearly distinguishable in the 
survival curves (Supplementary Figs. 1 and 2).

To assess the consistency in clustering results across 
different methods, we calculated the ARI for each pair of 
methods. As shown in Fig. 2, the clustering results from 
semi-supervised and supervised methods are highly con-
sistent with each other, and are dissimilar to the results 
from unsupervised methods (except for AC with TCGA-
LUAD data). Therefore, semi-supervised and supervised 
methods were able to obtain subtypes distinct from those 
obtained from unsupervised methods.

The analyses above performed clustering using PCs, 
which is a frequently used approach to reduce the dimen-
sion of features but may introduce biases. To make a more 
unbiased evaluation, we performed a separate set of anal-
yses using all the original features instead of PCs based on 
TCGA-LUAD data. Results are provided in Supplemen-
tary Tables  3 and Supplementary Figs.  3–5. Due to the 
large number of original features, survClust was unable 
to generate clustering results. Unsupervised methods and 
semi-supervised methods with random forest for feature 
selection also yielded less significant results. Specifically, 
all p-values from unsupervised methods were greater 

Fig. 2  Evaluation of the consistency of clustering results from different clustering methods. Note: The heatmaps present the ARI for each pair of clustering 
methods based on (A) TCGA-LUAD and (B) Shedden data. The results present unsupervised methods first, followed by semi-supervised and supervised

 

Fig. 1  Comparison of p-values from different clustering methods. Note: These forest plots display -log10 p-value for comparing survival distribution be-
tween the two clusters identified by each clustering method based on (A) TCGA-LUAD or (B) Shedden data. The methods are grouped based on cluster-
ing algorithms, with unsupervised methods on top, semi-supervised methods in the center, and survClust (SC), the supervised method, on the bottom. 
Semi-supervised methods and SC present the best performance of all the methods. The solid square indicates -log10(mean p-value) and horizonal line 
indicates the corresponding 95% CI over 200 trials for each method. The significance threshold of p = 0.05 is marked with a vertical line, with significant 
values to the right of the line

 



Page 5 of 6Zhang and Wang BMC Research Notes          (2023) 16:319 

than 0.05, and only the p-value from RF-GM was smaller 
than 0.05. Semi-supervised methods with Cox regression 
for feature selection appeared to be less affected by the 
switch from PCs to original features, with all p-values 
remaining highly significant.

Discussion
Our study showed that unsupervised clustering meth-
ods, regardless of the specific clustering algorithm, were 
unable to identify lung cancer subtypes with different 
prognosis in many cases. In contrast, semi-supervised 
and supervised clustering methods were able to identify 
subtypes with significant difference in patient survival 
time. Therefore, when the purpose of clustering is to 
identify prognostic subtypes, supervised and semi-super-
vised methods would be preferred.

The supervised method, survClust, is unable to con-
verge with large amounts of features, and some measure 
of feature reduction, such as PCA or a feature selec-
tion algorithm, may be required before clustering. It 
is also more computationally expensive than the other 
methods tested. Both supervised and semi-supervised 
methods require the outcome of patients to cluster, so 
unsupervised methods may be required in a study with-
out outcomes already available, although the clinical 
interpretation of the clustering results can be ambiguous.

Another item of note is that PCA can improve cluster-
ing results. Based on our analysis of TCGA-LUAD data, 
the analyses based on PCs (Table 1; Fig. 1) yielded smaller 
p-values than the analyses based on all the original fea-
tures (Supplementary Tables 3 and Supplementary Fig. 4) 
for all unsupervised and semi-supervised methods. This 
is likely due to the reduction in noise that PCA provides.

Limitations
Our study focuses on gene expression features for the 
identification of lung cancer prognostic subtypes. It has 
been well-documented that other molecular features, 
such as single nucleotide variants, copy number varia-
tions, and fusions, are also associated with lung cancer 
prognosis [10, 28]. Future studies that include those fea-
tures will provide a more comprehensive assessment and 
comparison of the performance of different clustering 
methods. In addition, simulation studies, where there are 
known “true” clusters, may also need to be conducted to 
further elucidate the strength and weakness of different 
clustering methods.
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