
R E S E A R C H N OT E Open Access

© The Author(s) 2024, corrected publication 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to
the data made available in this article, unless otherwise stated in a credit line to the data.

Piccoli et al. BMC Research Notes (2024) 17:35
https://doi.org/10.1186/s13104-024-06686-y

Introduction
With the decrease of sequencing costs, the amount of
genomic data generated and deposited in publicly avail-
able DNA databases (e.g. NCBI GenBank) has exponen-
tially increased over the last decades. The progressive
accumulation of sequences provides a solid compari-
son for newly-generated data. The BLAST (Basic Local
Alignment Search Tool) algorithm [1] was implemented
based on local similarity measures in sequence databases
searches, leading to an increased interest towards using
DNA fragments as taxonomic tools [e.g. 2, 3, 4, 5, 6].
The comparison process to identify unknown sequences
relies on the availability of a comprehensive compara-
tive molecular database and on recognized degrees of

BMC Research Notes

*Correspondence:
Costanza Piccoli
costanza.piccoli.92@gmail.com
1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos,
InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão,
4485-661 Vairão, Portugal
2Departamento de Biologia, Faculdade de Ciências, Universidade do
Porto, Rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
3BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO,
Campus de Vairão, 4485-661 Vairão, Portugal

Abstract
Objective A reliable taxonomic identification of species from molecular samples is the first step for many studies.
For researchers unfamiliar with programming, running a BLAST analysis, filtering, and organizing results for hundreds
of sequences through the BLAST web interface can be difficult. Additionally, sequences deposited in GenBank can
have outdated taxonomic identification. The use of reliable Reference Sequences Library (RSL) containing accurate
taxonomically-identified sequences facilitates this task. Pending the availability of a RSL with the user, we developed a
tool that automates the molecular taxonomic identification of sequences.

Results We developed PARSID, a Python script running through the command-line that automates the routine
workflow of blasting an input sequence file against the user’s RSL, and retrieves the matches with the highest
percentage of identity in five steps. PARSID accepts cut-off parameters and supplementary information in a.csv
file for filtering the results. The final output is visualized in a spreadsheet. We tested its functioning using 10 input
sequences simulating different situations of the molecular taxonomic identification of sequences against an example
RSL containing 25 sequences. Step-by-step instructions and test files are publicly available at https://github.com/
kokinide/PARSID.git.

Keywords Blastn, DNA-barcoding, Molecular taxonomy

PARSID: a Python script for automatic analysis
of local BLAST results for a rapid molecular
taxonomic identification
Costanza Piccoli1,2,3*, Antonio Muñoz-Mérida1,2,3 and Angelica Crottini1,2,3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/kokinide/PARSID.git
https://github.com/kokinide/PARSID.git
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-024-06686-y&domain=pdf&date_stamp=2024-4-16

Page 2 of 5Piccoli et al. BMC Research Notes (2024) 17:35

intraspecific and interspecific divergences in the genetic
marker analysed (i.e. barcoding gap; [7]).

The correctness of the results obtained through BLAST
searches against NCBI GenBank can be hampered by the
accuracy of the taxonomic identification of the deposited
material (e.g. mislabelling, submission errors, outdated
taxonomic nomenclature, etc.), that can ultimately deter-
mine taxonomic misidentifications [8]. This problem can
be solved by creating a local Reference Sequences Library
for the group of interest using taxonomically accurate
data. This step can also be performed in NCBI Gen-
Bank, but the processing and taxonomic identification
of each individual sequence from large datasets remains
time-consuming.

Here we present PARSID (PArser for Rapid Spe-
cies IDentification), a Python script that obtains tax-
onomically-accurate molecular species identifications
of multiple sequences of a selected marker, pending the
availability of a RSL (Reference Sequences Library). Tar-
get users are researchers unfamiliar with programming.
The aim of the script is automating the routine workflow
that includes: (1) generating a local BLAST database from
the user’s RSL; (2) performing the local BLAST; (3) pars-
ing the BLAST result; (4) filtering and tagging dubious
results; (5) organizing the final results in a spreadsheet.

Main text
Implementation
PARSID.py was developed in Python 3.8 (www.python.
org), and its functioning requires the Biopython package
(version 1.78; [9]; https://biopython.org), specifically the
Bio.Blast, Bio.SearchIO, and Bio.SeqIO subpackages, and
the XlsxWriter package (version 3.0.9; https://xlsxwriter.
readthedocs.io/index.html). The source code and test
files are available on GitHub [10] with detailed instruc-
tions. Before starting, BLAST+ [11] has to be locally
installed to run BLAST from command line.

Functioning
PARSID.py automates the process of obtaining taxo-
nomically-accurate molecular species identifications of
multiple sequences from an input file in five steps and
facilitates the visualization of the results (Fig. 1). The RSL
is a customized multi-sequence database used to per-
form the local BLAST against the input sequence file. It
contains single-marker reference sequences with unique
identifiers for each described and candidate species of
the analysed taxonomic group. While running the script,
the user sets the cut-off percentage for sequence identity
(user’s parameter: cutoff_pident), below which BLAST
results are not saved, and the interspecific sequence
divergence percentage (user’s parameter: intersp_div),
which corresponds to the divergence threshold defin-
ing different taxa. Sequences with larger degrees of

divergence in the BLAST analysis than the ones defined
with the intersp_div are tagged for further checking. The
user can provide supplementary tags for specific taxa
through a.csv file that the script integrates in the final
results file. The five main steps are explained below.

1. Generation of the local BLAST database using the
customized RSL available with the user (Bio.Blast
command makeblastdb). This step is the only one
that runs from the shell. This step is executed prior
using each different RSL.

2. Local BLAST of the input sequences and generation
of the BLAST result file to parse. The output format
is set on 12 standard fields in tabular format, adding
the query length (qlen), the subject length (slen), the
number of gaps (gaps), and the query coverage per
subject (qcovs). The result file is saved in plain-text
format that make it easier to consult and uses lower
computer memory than the .xml format. It contains
the hits with an identity percentage above the user’s
cutoff_pident.

3. Parsing and filtering the local BLAST result. For each
hit, the query coverage is calculated as:

qcov =

(qend − qstart + 1)
qlen

∗ 100

 Then the hits are filtered out by query coverage (< 75%),
and by alignment length (< 90% of the subject length).
These two parameters allow filtering those results that
have high percentage of identity calculated on a shorter
alignment length, in the case of a short query or short
reference sequence. The results are then sorted by per-
centage of identity. The best-match for each query is
retrieved.

4. Checking the parsed result by user’s parameter
(intersp_div) and .csv supplementary file. The results
that have a percentage of identity below the sequence
similarity threshold, calculated as:

 similaritythreshold = 100 − intersp_div

 or that have a query coverage below 75%, are tagged for
further checking. The variability of the selected genetic
marker is not always enough to enable accurate species
identification for some taxa. In this case the user can
integrate a supplementary file containing taxa-specific

http://www.python.org
http://www.python.org
https://biopython.org
https://xlsxwriter.readthedocs.io/index.html
https://xlsxwriter.readthedocs.io/index.html

Page 3 of 5Piccoli et al. BMC Research Notes (2024) 17:35

Fig. 1 Workflow of PARSID.py in five steps. It performs in order: (1) creation of a custom reference database from a multi-FASTA sequence list, named Ref-
erence Sequences Library (RSL), (2) local BLAST of input file against the RSL, (3) BLAST result parsing and filtering, (4) parsed BLAST result checking through
user’s parameter (intersp_div) and supplementary file (Check_tags.csv), and (5) organization of final results in spreadsheet format

Page 4 of 5Piccoli et al. BMC Research Notes (2024) 17:35

warnings so that the results of these specific sequences
can be flagged and the metadata of these sequences (e.g.
collection locality, voucher information, etc.) can be anal-
ysed to enhance identification.

5. Generation of the final output file. The output
file can be visualized in a spreadsheet. The first
sheet contains the list of the input sequences with
the respective BLAST’s best-matches, including
percentage of identity and query coverage. The
results below the similarity threshold or with query
coverage below 75% are color-coded for an easier
visualization. The second sheet contains all the hits
for those sequences tagged for further checking,
either due to low percentage of identity or low
query coverage. The third sheet contains the full
list of lineages of the customized RSL with the
respective sequences identifiers found in the input
file, and also the list of sequences with a percentage
of identity below the user’s cutoff_pident. The last
sheet contains some general information, as the
total number of lineages in the RSL, the taxonomic
coverage of the RSL (i.e. the percentage of taxa of
the RSL found in the input file), the total number
of input sequences, the percentage of sequences
processed (i.e. 100% if the script worked correctly),
and the number of results below the user’s
cutoff_pident.

Testing
To simulate the molecular taxonomic identification of
multiple sequences, we built a RSL using 25 sequences
available in GenBank belonging to the frog family of
Mantellidae of Madagascar for which the taxonomic
identification was considered reliable (based on an
expert-based approach). We tested the functioning of
the script using an input file of 10 sequences available in
GenBank (nine belonging to frogs of the family Mantelli-
dae and one belonging to a species of the family Hyperoli-
idae). We set the cutoff_pident at 90% and the intersp_div
at 3%. We included the optional.csv file to flag results of
the genus “Mantella” or the RSL sequences of the herpe-
tological collection of Museo Regionale di Scienze Natu-
rali di Torino (“MRSN”). These test files are available in
GitHub [10]. The input file included sequences with out-
dated taxonomic information, an outgroup (i.e. Heterixa-
lus), and some sequences that needed further checking.
The script successfully processed all sequences. The high-
est percentage of identity (%id) match was assigned to
the nine mantellid sequences. Each result also included
the following information to evaluate the query-subject
alignment: %qcov, qlen, slen, aln_len, evalue, and notes.
Of these nine sequences, three were highlighted in red

and were tagged for further checking as the %id was
below the similarity threshold initially set (i.e. 97%). Fur-
ther results ordered by %id for these three sequences
were listed in the second sheet of the result spreadsheet.
Other sequences tagged for further checking contained
information included in the.csv file. In the third sheet,
results are organized by lineage and outgroups’ identi-
fiers (i.e. sequences not belonging to Mantellidae were
pooled together). In the fourth sheet, the script provided
the taxonomic coverage in the RSL (28%), the number of
taxa in the RSL without a sample (18 taxa), and the num-
ber of outgroups (1 sequence).

Discussion
Molecular taxonomic identification is a fundamental
step in species identification. PARSID.py facilitates the
analysis of a large number of sequences, and allows the
user to obtain filtered and organized results of molecu-
lar species identification in a short time. Despite lacking
a graphical interface, the script is easy to run and the user
is not required to have prior experience in programming.
Indeed, the parameters to set for filtering the results are
few and simple to introduce. By providing the script with
supplementary taxa-specific check warnings, the user
can customize the output following its needs and inte-
grate additional information in the final results. Unlike
the BLAST web interface, in which the hits are visual-
ized for a single query at a time, PARSID.py’s final out-
put shows the best-matches for all the queries and results
are organized in a single spreadsheet, which is easy to
edit and use for downstream analysis. For example, when
analyzing a heterogeneous file of several unidentified
sequences, it is useful to have all the analysed sequences
sorted by lineage, to pool only the samples of a specific
taxon.

Limitations
This script enables the blasting, parsing, and filtering of
sequences that otherwise can be performed by an expert
bioinformatician through command-line shell. PAR-
SID.py does not allow setting different intersp_div in
the same analysis while analysing an input file contain-
ing sequences from different taxonomic groups, which
would require having different threshold for molecu-
lar taxonomic identification. This is because the func-
tionality of the script relies on defining the interspecific
sequence divergence in distinguishing the taxa, while
comparing the input file against the customized RSL. If
different group of taxa show different thresholds of inter-
specific divergence, we recommend splitting the input
file based on their higher taxonomic identification (e.g.
genus, subfamily, family) and process each group sepa-
rately applying different intersp_div threshold param-
eters. The reliability of the results depends on the quality

Page 5 of 5Piccoli et al. BMC Research Notes (2024) 17:35

of the user’s RSL. Computational time and memory usage
depends on the dimension of the input file.

Abbreviations
BLAST Basic Local Alignment Search Tool
PARSID PArser for Rapid Species IDentification
RSL Reference Sequences Library

Acknowledgements
Not applicable.

Author contributions
CP conceived the idea, developed the script in Python programming
language, drafted the manuscript and prepared the figure. AMM tested
the script and provided critical comments to improve the script and the
manuscript. AC contributed to the discussion around the need of the
script and revised the manuscript. All authors read and approved the final
manuscript.

Funding
Portuguese National Funds through Fundação para a Ciência e a Tecnologia
support the PhD Studentship through the “Biodiversity, Genetics and
Evolution Doctoral Programme” (BIODIV) of CP (SFRH/BD/144342/2019), and
the research contract to AC (2020.00823.CEECIND/CP1601/CT0003). Work
supported by National Funds through FCT-Fundação para a Ciência e a
Tecnologia in the scope of the project UIDP/50027/2020.

Data availability
The source code of this article is available in the GitHub repository, https://doi.
org/10.5281/zenodo.8217541 (https://github.com/kokinide/PARSID.git) under
the GNU General Public License v3.0.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 5 August 2023 / Accepted: 5 January 2024

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment

Search Tool. J Mol Biol. 1990;215:403–10.
2. Wilson KH. Molecular biology as a tool for taxonomy. Clin Infect Dis.

1995;20(Suppl 2):117–21.
3. Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications

through DNA barcodes. Proceedings of the Royal Society of London. Series B:
Biological Sciences. 2003;270(1512):313–21.

4. Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity
through DNA barcoding: chances and challenges. Philosophical Trans Royal
Soc B: Biol Sci. 2005;360(1462):1859–68.

5. Vences M, Thomas M, Van der Meijden A, Chiari Y, Vieites DR. Comparative
performance of the 16S rRNA gene in DNA barcoding of amphibians. Front
Zool. 2005;2:1–12.

6. Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends
Ecol Evol. 2009;24(2):110–7.

7. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive
sampling. PLoS Biol. 2005;3:2229–38.

8. Harris DJ. Can you bank on GenBank? Trends Ecol Evol. 2003;18:317–9.
9. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,

Hamelryck T, Kauff F, Wilczynski B, De Hoon MJL. Biopython: freely available
Python tools for computational molecular biology and bioinformatics. Bioin-
formatics. 2009;25:1422–3.

10. Piccoli C, Muñoz-Mérida A, Crottini A. PARSID (v1.0.0). Zenodo. 2023. https://
doi.org/10.5281/zenodo.8217541.

11. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
TL. BLAST+: Architecture and applications. BMC Bioinformatics. 2009;10:1–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.8217541
https://doi.org/10.5281/zenodo.8217541
https://github.com/kokinide/PARSID.git
https://doi.org/10.5281/zenodo.8217541
https://doi.org/10.5281/zenodo.8217541

	PARSID: a Python script for automatic analysis of local BLAST results for a rapid molecular taxonomic identification
	Abstract
	Introduction
	Main text
	Implementation
	Functioning
	Testing

	Discussion
	Limitations

	References

