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Abstract 

Objective Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A com-
prehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number 
(mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, 
as they are linked through oxidative stress mechanisms. We conducted a case–control study to examine peripheral 
blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). 
The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR).

Results Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast can-
cer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In 
under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) 
and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We 
also found a significantly higher ‘High-High’ pattern of mtDNA-CN and RTL in breast cancer patients under 48 years 
old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally 
invasive biomarkers for breast cancer risk evaluation.
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Introduction
Breast cancer has been the leading cause of cancer inci-
dence globally in 2020 and continues to be the primary 
cause of cancer-related deaths among women [1, 2]. It is 
also the most common type of cancer in Indonesia, with 
a higher age-standardised death rate (15.3 per 100,000) 
[3] than the global mortality rate (13.6 per 100,000) in 
2020 [4], indicating a relatively lower survival rate for 
breast cancer patient in Indonesia.

The search for non-invasive biomarkers for breast 
cancer screening remains a challenging process. One of 
these efforts involves exploring the potential utilisation of 
the peripheral blood mitochondrial DNA copy number 
(mtDNA-CN) and relative telomere length (RTL) [5–7].

The relationship between mitochondria and telomeres 
has been studied extensively, particularly in biological 
ageing. They are intertwined through the telomere-p53-
PGC–1α-mitochondria axis and are intricately linked 
to oxidative stress [8]. Their functionality is commonly 
estimated by measuring the mtDNA-CN and RTL. Nev-
ertheless, studies that simultaneously incorporating both 
biomarkers, particularly in association with breast can-
cer, remain limited. Independent studies with periph-
eral blood mtDNA-CN [6, 9–13] and RTL [5, 14–20] 
have also reported inconsistent findings. However, a 
prospective study by Campa et al. found a positive asso-
ciation between high peripheral blood mtDNA-CN and 
high RTL, along with an increased risk of breast cancer 
[7], suggesting that peripheral blood mtDNA-CN and 
RTL could be used as minimally invasive biomarkers for 
breast cancer risk evaluation.

Our study aimed to investigate the differences in 
peripheral blood mtDNA-CN and RTL between breast 
cancer patients and healthy subjects in Indonesia. To the 
best of our knowledge, such a study has not been con-
ducted in Indonesia before. We hypothesise that there 
are significant differences in both biomarkers between 
breast cancer patients and healthy subjects, which can 
potentially be utilised as additional minimally invasive 
biomarkers for breast cancer risk evaluation in Indonesia.

Methods
Study design and participants
This retrospective case–control study was initially con-
ducted between 2019 and 2020, following specific inclu-
sion and exclusion criteria [21]. The case subjects are 
females diagnosed with breast cancer based on histopa-
thology and immunohistochemistry assay, aged 19 years 
or older, who have not undergone any cancer therapies. 
The control subjects are healthy disease-free females, 
aged 19  years or older, without any history of cancer 
and chronic illnesses. Following the incorporation of 

incomplete data as additional exclusion criteria, this 
study further investigated 175 breast cancer patients and 
181 healthy subjects from six public referral hospitals in 
Indonesia (Additional file 1: Fig. S1). Approval from the 
Ethical Committee of Health Research at the Faculty of 
Medicine, Universitas Indonesia, Rumah Sakit Cipto 
Mangunkusumo, Jakarta, Indonesia, was obtained under 
reference number 450/UN2. F1/ETIK/2018.

Clinical samples and data measurements
We analysed 356 archived peripheral blood samples 
stored at −70  °C. Demographic data were obtained 
using a self-administered questionnaire, including age, 
menarche age, menopause, childbirth history, breastfeed-
ing, hormonal contraceptive use, smoking status, and 
alcohol consumption. Body mass index (BMI) was cal-
culated by dividing weight (kg) by height squared  (m2). 
Serum lipid concentrations were measured after 12 h of 
overnight fasting, including triglycerides (TG), high-den-
sity lipoprotein-cholesterol (HDL-C), low-density lipo-
protein-cholesterol (LDL-C), and total cholesterol (TC). 
We also calculated the triglyceride glucose (TyG) index 
using the following equation: Ln[fasting TG (mg/dL) x 
FPG (mg/dL)/2] [22].

Measurement of peripheral blood mtDNA‑CN and RTL
Total DNA was extracted from archived peripheral blood 
samples using the salting-out methods. Blood samples 
with a total volume of 3 mL were extracted by employ-
ing Gentra® Puregene® Blood Kit (Qiagen, Hilden, Ger-
many). Meanwhile, samples with a total volume of 1 mL 
were extracted using Geneius™ Micro gDNA Extraction 
Kit (Geneaid Biotech Ltd., New Taipei City, Taiwan), fol-
lowing both manufacturers’ instructions. Despite differ-
ent extraction kits, no significant differences were found 
in mtDNA-CN and RTL measurement results (Addi-
tional file 1: Table S1).

Each extracted DNA sample was diluted with nucle-
ase-free water (Ambion, Texas, USA) to a concentra-
tion of 5 ng/μL and used as a quantitative real-time PCR 
(qPCR) template. The reactions were carried out using 
Power  SYBR™ Green PCR Master Mix (Applied Biosys-
tems, California, USA) on a 7500 Real-Time PCR System 
(Applied Biosystems, California, USA). Each sample was 
evaluated in duplicate. The mtDNA-CN [23] and RTL 
[24] were measured by calculating their relative ratios 
to Beta-2-microglobulin (B2M), the single-copy nuclear-
encoded reference gene. This calculation was based on 
the efficiency-corrected method implemented in the 
“qpcR” package [25]. A list of the primer pairs is provided 
in Additional file 1: Table S2.
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Statistical analyses
Data analysis was performed using R version 
4.1.2 (www.r- proje ct. org) with R Studio (version 
2021.9.2.382; www. rstud io. com). The normality of 
continuous variables was evaluated using the Shap-
iro–Wilk test. Medians (interquartile ranges) were 
reported for non-normally distributed variables (age, 
BMI, TG, HDL-C, LDL-C, TC, FPG, TyG  index) and 
evaluated using the Wilcoxon-Mann Whitney U test. 
Categorical variables (alcohol consumption, smoking, 
menarche age, menopause, childbirth history, breast-
feeding, hormonal contraceptive use) were evaluated 
using Pearson’s chi-square test and reported as the 
number of samples (percentage). Since the relative 
ratios of mtDNA-CN and RTL were not normally dis-
tributed even after being transformed into  loge, their 
associations were estimated using rank-based linear 
regression models using the “Rfit” package [26]. Odds 
ratios (ORs) with 95% confidence intervals (CIs) were 
calculated using the likelihood ratio test, adjusted for 
potential confounders. Variable selections incorpo-
rated in the model were carried out using stepwise 
multiple regression implemented in the “MASS” pack-
age [27]. Confounders added to the models were age, 
BMI, HDL-C, LDL-C, TC, TyG index, alcohol con-
sumption, and smoking status. Analyses were carried 
out on all subjects and sub-groups based on age (under 
48  years and above 48  years subgroups). The cut-off 
age of 48  years was determined by the ‘SpEqualSe’ 
method in the “OptimalCutpoints” package, based on 
the equality of specificity and sensitivity values [28]. 
The effect size and power calculation were done using 
the “pwr” package [29]. Significance was indicated by a 
p-value of < 0.025, following Bonferroni correction.

Results
Characteristics of study participants
The characteristics of the study participants are shown 
in Additional file  1: Table  S3. Compared to the healthy 
subjects, breast cancer patients had significantly higher 
median age (median value, healthy group vs. breast can-
cer group, 45 years vs. 48 years, p = 0.003) and lower BMI 
(p = 0.003). Several clinical characteristics also showed 
significant differences (all p < 0.050). Breast cancer 
patients had a higher TG, lower HDL-C, higher FPG, and 
TyG index compared to healthy subjects. The prevalences 
of alcohol consumption and smoking were significantly 
higher in breast cancer patients. Those who developed 
breast cancer had a notably higher frequency of child-
birth history, breastfeeding for less than 12 months, and 
hormonal contraceptive use.

The positive association between peripheral blood 
mtDNA‑CN and RTL
We found a consistent positive association between 
peripheral blood mtDNA-CN and RTL in all subjects and 
healthy and breast cancer groups. The association was 
found noteworthy (p < 0.001; R2 > 0.4) in each group, as 
shown in Fig. 1.

Comparison of peripheral blood mtDNA‑CN and RTL 
between breast cancer patients and healthy subjects
The univariate comparison of peripheral blood mtDNA-
CN and RTL between breast cancer patients and healthy 
subjects is presented in Additional file  1: Fig. S2. The 
peripheral blood mtDNA-CN was significantly higher in 
the breast cancer patients compared to the healthy sub-
jects (median value, healthy subjects vs. breast cancer 
patients, 1.62 vs. 1.79; p = 0.038). However, no significant 
differences in RTL were found between the two groups.

Fig. 1 The positive association between peripheral blood mtDNA-CN and RTL. MtDNA-CN and RTL were positively associated with one another 
in A all samples, B healthy subjects, and C breast cancer patients

http://www.r-project.org
http://www.rstudio.com
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Additional analyses were performed on age sub-
groups, specifically those under and over 48  years old. 
Additional file 1: Fig. S3 displays the results of a univari-
ate comparison between mtDNA-CN and RTL levels 
in peripheral blood samples for healthy individuals and 
breast cancer patients in each age subgroup (under and 
above 48  years). Our findings indicated that mtDNA-
CN (p = 0.059) and RTL (p = 0.008) tended to be higher 
in healthy subjects aged 48 years and above. In contrast, 
RTL levels (p = 0.046) tended to be lower in breast cancer 
patients aged above 48 years.

We also conducted multivariate analyses in the age sub-
groups and presented the results as odds ratios. Breast 
cancer patients in the under 48 years subgroup had a sig-
nificantly higher mtDNA-CN when analysed with clas-
sified median value (mtDNA-CN ≥ 1.73 (median), OR 
2.81, 95% CI 1.31–6.22, p = 0.009, power = 1), and showed 
nominal significance when analysed as a continuous vari-
able (OR 1.97, 95% CI 1.04–3.86, p = 0.040, power = 1) 
(Fig. 2A).

RTL was also higher in under 48  years breast can-
cer patients when analysed as a continuous variable 
(OR 2.04, 95% CI 1.21–3.60, p = 0.010, power = 1) and 
showed a nominal significance when analysed with clas-
sified median value (RTL ≥ 0.71 (median), OR 2.24, 95% 
CI 1.06–4.85, p = 0.037, power = 1) (Fig. 2B) as compared 
to the corresponding healthy subjects. Meanwhile, no 
significant odds ratios were found in the above 48-year 
subgroup.

We analysed the combination patterns of mtDNA-CN 
and RTL in peripheral blood using their median values. 
Values below the median were categorised as ‘Low’, while 
those above were considered ’High’. The median values 
for mtDNA-CN and RTL are 1.73 and 0.71, respectively. 
Consistent with individual analysis, we identified a sig-
nificantly higher ‘High-High’ pattern of mtDNA-CN and 
RTL in breast cancer patients under 48  years old com-
pared to healthy subjects of the same age group (OR 
3.03, 95% CI 1.31–7.25, p = 0.011, power = 1). However, 
there were no significant differences in ‘Low–High’ and 

Fig. 2 Higher peripheral blood mtDNA-CN (A) and RTL (B) in under 48 years breast cancer patients. The odds ratios of multivariate analysis 
for mtDNA-CN (A) and RTL (B) were presented as forest plots. The under 48 years subgroup was presented as white square (□). The above 48 years 
subgroup was presented as black square (■). The mtDNA-CN and RTL were analysed as a continuous variable and classified by the median value. 
Peripheral blood mtDNA-CN were significantly higher in under 48 years (□) breast cancer patients when analysed using the median cut-off (1.73) 
and nominally significant when analysed as a continuous variable. Meanwhile, peripheral blood RTL was significantly higher in under 48 years (□) 
breast cancer patients when being analysed as a continuous variable and nominally significant when being analysed using the median cut-off 
(0.71). No significant result was found in the above 48 years (■) subgroup. The likelihood ratio test was used to calculate odds ratios (ORs) with 95% 
confidence intervals (95% CIs) for association studies. Potential confounders added to the models were age, BMI, HDL-C, LDL-C, TC, TyG index, 
alcohol consumption, and smoking status. Significance was indicated by a p-value of < 0.025, following Bonferroni correction
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‘High-Low’ patterns in both subgroups under and above 
48 years old (p > 0.050, power = 1), as depicted in Fig. 3.

Discussion
Breast cancer is a complex disease influenced by numer-
ous factors. The development and presence of the disease 
contribute to systemic changes. These alterations can 
be observed in circulating blood, leading breast cancer 
to be recognised as a systemic disease [30]. Furthermore, 
in addition to  its minimally invasive collection  meth-
ods, blood circulates throughout the body and contains 
information regarding systemic status, e.g., the body’s 
response to malignancies [31]. This study observed dis-
tinct peripheral blood mtDNA-CN and RTL patterns 
between Indonesian breast cancer patients and healthy 
subjects, particularly in the under 48 years subgroup.

The mtDNA-CN and RTL are commonly associated 
with the ageing process, and numerous studies have 
highlighted an inverse relationship between these mark-
ers and age [32, 33]. Both biomarkers exhibit dynamic 
regulation in response to environmental changes, mainly 
with antioxidant-oxidant imbalance. The lack of histone 
and less-adequate repair mechanism in mtDNA [34] and 
high-guanine residue in telomeres makes them suscepti-
ble to oxidative stress exposure [35]. Following previous 
studies in healthy adults [36, 37], pregnant women [38], 

gastric cancer tissues [39], and breast cancer patients 
[40], our study also found a positive association between 
peripheral blood mtDNA-CN and RTL, indicating their 
significant interrelationship.

Our multivariate analysis revealed that breast can-
cer patients, particularly those under 48  years, exhib-
ited a higher peripheral blood mtDNA-CN and RTL 
than healthy subjects. An increase in peripheral blood 
mtDNA-CN is potentially due to the activation of mito-
chondrial compensatory mechanism to maintain mito-
chondrial function in response to prolonged oxidative 
stress exposure during disease progression [41–44]. The 
dynamic regulation of blood telomere length occurs dur-
ing hematopoiesis in the bone marrow. In the case of 
chronic diseases like breast cancer, prolonged exposure 
to oxidative stress may stimulate telomere lengthening 
as compensation for telomere loss in hematopoietic cells, 
which can later be observed in the peripheral blood cells 
[45]. Our finding also revealed that the ‘High-High’ com-
bined pattern of both biomarkers was predominant in 
breast cancer patients under 48 years, which is consistent 
with previous research [7].

In separate and combined mtDNA-CN and RTL analy-
ses, the subgroup of individuals under 48 years old con-
sistently showed statistically significant results. This 
observation can be attributed to several factors. Firstly, it 

Fig. 3 ‘High-High’ pattern of peripheral blood mtDNA-CN and RTL in under 48 years breast cancer patients. The odds ratios of multivariate analysis 
for the mtDNA-CN and RTL combination pattern were presented as a forest plot. The under 48 years subgroup was presented as white square 
(□). The above 48 years subgroup was presented as black square (■). The combination was determined by the median value of each marker. The 
median cut-off is 1.73 for mtDNA-CN and 0.71 for RTL. A value below the median ( <) was classified as ‘Low’ and above the median ( ≥) as ‘High’. The 
‘Low-Low’ combination was used as a reference. A ‘High-High’ combination was significantly found to be higher in under 48 years (□) breast cancer 
patients. No significant result was found in the above 48 years (■) subgroup. The multinomial regression test was used to calculate odds ratios (ORs) 
with 95% confidence intervals (95% CIs) for association studies. Potential confounders added to the models were age, BMI, HDL-C, LDL-C, TC, TyG 
index, alcohol consumption, and smoking status. Significance was indicated by a p-value of < 0.025, following Bonferroni correction
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is worth noting that 48 years corresponds to the average 
age of menopause for Indonesian women [46–48]. Sec-
ondly, younger individuals may possess a better capacity 
for the compensatory mechanism of mitochondria and 
telomeres. The differences are more pronounced when 
comparing a relatively younger case–control subgroup 
[49, 50].

The regulation of mtDNA-CN and RTL can be affected 
by the level and duration of exposure to oxidative stress 
[51, 52]. Studies have shown that breast cancer patients 
typically exhibit higher levels of oxidative stress com-
pared to healthy individuals [53]. Various risk factors for 
breast cancer can contribute to the development of oxi-
dative stress during breast carcinogenesis. In this study, 
we identified several significant differences in specific 
clinical parameters (TG, HDL-C, FPG, TyG index) and 
lifestyle factors (alcohol consumption, smoking, breast-
feeding duration, hormonal contraceptive use) between 
the breast cancer and healthy groups (Additional file  1: 
Table  S3). These variables are known to increase the 
risk of breast cancer. Alcohol consumption [54], smok-
ing [55], and lifestyle changes that lead to alterations 
in serum lipid concentrations [56, 57] have been linked 
to increased oxidative stress levels through various 
mechanisms.

On the other hand, cancer cells also produce ROS due 
to their high metabolic rate, accumulation of genetic 
alterations, relative hypoxia, and persistent inflamma-
tion [58]. Therefore, the altered level of oxidative stress 
in breast cancer patients might have resulted from either 
the presence of risk factors during carcinogenesis or the 
production of ROS by cancer cells. Nevertheless, deter-
mining the underlying mechanisms from a case–control 
study perspective can be pretty challenging.

Limitations
It is important to note that this study has some limita-
tions. Firstly, the study cannot be generalised to other 
populations. Secondly, we did not measure any oxida-
tive stress markers, which could provide valuable insights 
into the underlying mechanisms of mtDNA-CN and RTL 
regulations in breast cancer. Thirdly, the retrospective 
case–control study design cannot explain the direction 
of causation. Hence, future prospective studies enrolling 
other populations are warranted.

Conclusion
In summary, we have identified distinctive peripheral blood 
mtDNA-CN and RTL characteristics in  under 48 years 
breast cancer patients. This pilot case–control study for 
Indonesian breast cancer patients has highlighted a poten-
tial utilisation of both biomarkers as additional minimally 

invasive tools for enhancing early breast cancer risk 
evaluation.
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